Local Search For Satisfiability Modulo Integer Arithmetic Theories

Author:

Cai Shaowei1ORCID,Li Bohan1ORCID,Zhang Xindi1ORCID

Affiliation:

1. State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences and School of Computer Science and Technology, University of Chinese Academy of Sciences, China

Abstract

Satisfiability Modulo Theories (SMT) refers to the problem of deciding the satisfiability of a formula with respect to certain background first-order theories. In this article, we focus on Satisfiablity Modulo Integer Arithmetic, which is referred to as SMT(IA), including both linear and non-linear integer arithmetic theories. Dominant approaches to SMT rely on calling a CDCL-based SAT solver, either in a lazy or eager flavour. Local search, a competitive approach to solving combinatorial problems including SAT, however, has not been well studied for SMT. We develop the first local-search algorithm for SMT(IA) by directly operating on variables, breaking through the traditional framework. We propose a local-search framework by considering the distinctions between Boolean and integer variables. Moreover, we design a novel operator and scoring functions tailored for integer arithmetic, as well as a two-level operation selection heuristic. Putting these together, we develop a local search SMT(IA) solver called LocalSMT. Experiments are carried out to evaluate LocalSMT on benchmark sets from SMT-LIB. The results show that LocalSMT is competitive and complementary with state-of-the-art SMT solvers, and performs particularly well on those formulae with only integer variables. A simple sequential portfolio with Z3 improves the state-of-the-art on satisfiable benchmark sets from SMT-LIB.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

NSFC

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Reference71 articles.

1. Dynamic local search

2. William Symes Andrews. 1917. Magic Squares and Cubes. Open Court Publishing Company.

3. Adrian Balint and Uwe Schöning. 2012. Choosing probability distributions for stochastic local search and the role of make versus break. In Proceedings of the International Conference on Theory and Applications of Satisfiability Testing. Springer, 16–29.

4. Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A versatile and industrial-strength SMT solver. In Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 415–442.

5. Satisfiability Modulo Theories

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Local Search Algorithm for MaxSMT(LIA);Lecture Notes in Computer Science;2024-09-11

2. Neural Solving Uninterpreted Predicates with Abstract Gradient Descent;ACM Transactions on Software Engineering and Methodology;2024-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3