Generation-based Multi-view Contrast for Self-supervised Graph Representation Learning

Author:

Han Yuehui1ORCID

Affiliation:

1. Nanjing University of Science and Technology, Nanjing, China

Abstract

Graph contrastive learning has made remarkable achievements in the self-supervised representation learning of graph-structured data. By employing perturbation function (i.e., perturbation on the nodes or edges of graph), most graph contrastive learning methods construct contrastive samples on the original graph. However, the perturbation-based data augmentation methods randomly change the inherent information (e.g., attributes or structures) of the graph. Therefore, after nodes embedding on the perturbed graph, we cannot guarantee the validity of the contrastive samples as well as the learned performance of graph contrastive learning. To this end, in this article, we propose a novel generation-based multi-view contrastive learning framework (GMVC) for self-supervised graph representation learning, which generates the contrastive samples based on our generator rather than perturbation function. Specifically, after nodes embedding on the original graph we first employ random walk in the neighborhood to develop multiple relevant node sequences for each anchor node. We then utilize the transformer to generate the representations of relevant contrastive samples of anchor node based on the features and structures of the sampled node sequences. Finally, by maximizing the consistency between the anchor view and the generated views, we force the model to effectively encode graph information into nodes embeddings. We perform extensive experiments of node classification and link prediction tasks on eight benchmark datasets, which verify the effectiveness of our generation-based multi-view graph contrastive learning method.

Publisher

Association for Computing Machinery (ACM)

Reference55 articles.

1. Fredrik Carlsson, Amaru Cuba Gyllensten, Evangelia Gogoulou, Erik Ylipää Hellqvist, and Magnus Sahlgren. 2020. Semantic re-tuning with contrastive tension. In Proceedings of the International Conference on Learning Representations.

2. metapath2vec

3. Vijay Prakash Dwivedi and Xavier Bresson. 2021. A generalization of transformer networks to graphs. arXiv:2012.09699 [cs.LG].

4. Evgeniy Faerman Otto Voggenreiter Felix Borutta Tobias Emrich Max Berrendorf and Matthias Schubert. 2019. Graph alignment networks with node matching scores. Proceedings of Advances in Neural Information Processing Systems (NIPS) 2 (2019).

5. node2vec

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3