Parameterized Bounded-Depth Frege Is not Optimal

Author:

Beyersdorff Olaf1,Galesi Nicola2,Lauria Massimo2,Razborov Alexander A.3

Affiliation:

1. University of Leeds

2. Sapienza University Rome

3. University of Chicago

Abstract

A general framework for parameterized proof complexity was introduced by Dantchev et al. [2007]. There, the authors show important results on tree-like Parameterized Resolution---a parameterized version of classical Resolution---and their gap complexity theorem implies lower bounds for that system. The main result of this article significantly improves upon this by showing optimal lower bounds for a parameterized version of bounded-depth Frege. More precisely, we prove that the pigeonhole principle requires proofs of size n Ω(k) in parameterized bounded-depth Frege, and, as a special case, in dag-like Parameterized Resolution. This answers an open question posed in Dantchev et al. [2007]. In the opposite direction, we interpret a well-known technique for FPT algorithms as a DPLL procedure for Parameterized Resolution. Its generalization leads to a proof search algorithm for Parameterized Resolution that in particular shows that tree-like Parameterized Resolution allows short refutations of all parameterized contradictions given as bounded-width CNFs.

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Theoretical Computer Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proof Complexity and the Binary Encoding of Combinatorial Principles;SIAM Journal on Computing;2024-06-24

2. Clique Is Hard on Average for Unary Sherali-Adams;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

3. Proof Complexity of Modal Resolution;Journal of Automated Reasoning;2021-10-13

4. Clique Is Hard on Average for Regular Resolution;Journal of the ACM;2021-06-30

5. Chapter 17. Fixed-Parameter Tractability;Frontiers in Artificial Intelligence and Applications;2021-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3