FPGA-based Acceleration of Time Series Similarity Prediction: From Cloud to Edge

Author:

Kalantar Amin1ORCID,Zimmerman Zachary2ORCID,Brisk Philip1ORCID

Affiliation:

1. University of California, Riverside, USA

2. Google Inc., Mountain View, CA, USA

Abstract

With the proliferation of low-cost sensors and the Internet of Things, the rate of producing data far exceeds the compute and storage capabilities of today’s infrastructure. Much of this data takes the form of time series, and in response, there has been increasing interest in the creation of time series archives in the past decade, along with the development and deployment of novel analysis methods to process the data. The general strategy has been to apply a plurality of similarity search mechanisms to various subsets and subsequences of time series data to identify repeated patterns and anomalies; however, the computational demands of these approaches renders them incompatible with today’s power-constrained embedded CPUs. To address this challenge, we present FA-LAMP, an FPGA-accelerated implementation of the Learned Approximate Matrix Profile (LAMP) algorithm, which predicts the correlation between streaming data sampled in real-time and a representative time series dataset used for training. FA-LAMP lends itself as a real-time solution for time series analysis problems such as classification. We present the implementation of FA-LAMP on both edge- and cloud-based prototypes. On the edge devices, FA-LAMP integrates accelerated computation as close as possible to IoT sensors, thereby eliminating the need to transmit and store data in the cloud for posterior analysis. On the cloud-based accelerators, FA-LAMP can execute multiple LAMP models on the same board, allowing simultaneous processing of incoming data from multiple data sources across a network. LAMP employs a Convolutional Neural Network (CNN) for prediction. This work investigates the challenges and limitations of deploying CNNs on FPGAs using the Xilinx Deep Learning Processor Unit (DPU) and the Vitis AI development environment. We expose several technical limitations of the DPU, while providing a mechanism to overcome them by attaching custom IP block accelerators to the architecture. We evaluate FA-LAMP using a low-cost Xilinx Ultra96-V2 FPGA as well as a cloud-based Xilinx Alveo U280 accelerator card and measure their performance against a prototypical LAMP deployment running on a Raspberry Pi 3, an Edge TPU, a GPU, a desktop CPU, and a server-class CPU. In the edge scenario, the Ultra96-V2 FPGA improved performance and energy consumption compared to the Raspberry Pi; in the cloud scenario, the server CPU and GPU outperformed the Alveo U280 accelerator card, while the desktop CPU achieved comparable performance; however, the Alveo card offered an order of magnitude lower energy consumption compared to the other four platforms. Our implementation is publicly available at https://github.com/aminiok1/lamp-alveo.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Implementation of Data-Intensive Application using Memory Expansion Device;2023 14th International Conference on Information and Communication Technology Convergence (ICTC);2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3