Disk allocation for Cartesian product files on multiple-disk systems

Author:

Du H. C.1,Sobolewski J. S.2

Affiliation:

1. Univ. of Minnesota, Minneapolis

2. Univ. of Washington, Seattle

Abstract

Cartesian product files have recently been shown to exhibit attractive properties for partial match queries. This paper considers the file allocation problem for Cartesian product files, which can be stated as follows: Given a k -attribute Cartesian product file and an m -disk system, allocate buckets among the m disks in such a way that, for all possible partial match queries, the concurrency of disk accesses is maximized. The Disk Modulo (DM) allocation method is described first, and it is shown to be strict optimal under many conditions commonly occurring in practice, including all possible partial match queries when the number of disks is 2 or 3. It is also shown that although it has good performance, the DM allocation method is not strict optimal for all possible partial match queries when the number of disks is greater than 3. The General Disk Modulo (GDM) allocation method is then described, and a sufficient but not necessary condition for strict optimality of the GDM method for all partial match queries and any number of disks is then derived. Simulation studies comparing the DM and random allocation methods in terms of the average number of disk accesses, in response to various classes of partial match queries, show the former to be significantly more effective even when the number of disks is greater than 3, that is, even in cases where the DM method is not strict optimal. The results that have been derived formally and shown by simulation can be used for more effective design of optimal file systems for partial match queries. When considering multiple-disk systems with independent access paths, it is important to ensure that similar records are clustered into the same or similar buckets, while similar buckets should be dispersed uniformly among the disks.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized Optimal Response Time Retrieval of Replicated Data from Storage Arrays;ACM Transactions on Storage;2013-07

2. A hierarchical organization approach of multi-dimensional remote sensing data for lightweight Web Map Services;Earth Science Informatics;2012-03

3. Equivalent Disk Allocations;IEEE Transactions on Parallel and Distributed Systems;2012-03

4. Geospatial Web Service for Remote Sensing Data Visualization;2011 IEEE International Conference on Advanced Information Networking and Applications;2011-03

5. Parallel M-tree Based on Declustering Metric Objects using K-medoids Clustering;2010 Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science;2010-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3