ConSeq

Author:

Zhang Wei1,Lim Junghee1,Olichandran Ramya1,Scherpelz Joel1,Jin Guoliang1,Lu Shan1,Reps Thomas2

Affiliation:

1. University of Wisconsin--Madison, Madison, WI, USA

2. University of Wisconsin--Madison; GrammaTech,Inc, Madison, WI, USA

Abstract

Concurrency bugs are caused by non-deterministic interleavings between shared memory accesses. Their effects propagate through data and control dependences until they cause software to crash, hang, produce incorrect output, etc. The lifecycle of a bug thus consists of three phases: (1) triggering, (2) propagation, and (3) failure. Traditional techniques for detecting concurrency bugs mostly focus on phase (1)--i.e., on finding certain structural patterns of interleavings that are common triggers of concurrency bugs, such as data races. This paper explores a consequence-oriented approach to improving the accuracy and coverage of state-space search and bug detection. The proposed approach first statically identifies potential failure sites in a program binary (i.e., it first considers a phase (3) issue). It then uses static slicing to identify critical read instructions that are highly likely to affect potential failure sites through control and data dependences (phase (2)). Finally, it monitors a single (correct) execution of a concurrent program and identifies suspicious interleavings that could cause an incorrect state to arise at a critical read and then lead to a software failure (phase (1)). ConSeq's backwards approach, (3)!(2)!(1), provides advantages in bug-detection coverage and accuracy but is challenging to carry out. ConSeq makes it feasible by exploiting the empirical observationthat phases (2) and (3) usually are short and occur within one thread. Our evaluation on large, real-world C/C++ applications shows that ConSeq detects more bugs than traditional approaches and has a much lower false-positive rate.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detect atomicity violations in concurrent programs through user assistance and identification of suspicious variable access patterns;Journal of Software: Evolution and Process;2024-09-03

2. Understanding and Detecting Real-World Safety Issues in Rust;IEEE Transactions on Software Engineering;2024-06

3. Information Retrieval-Based Fault Localization for Concurrent Programs;2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE);2023-09-11

4. WAFFLE: Exposing Memory Ordering Bugs Efficiently with Active Delay Injection;Proceedings of the Eighteenth European Conference on Computer Systems;2023-05-08

5. ParallelC-Assist: Productivity Accelerator Suite Based on Dynamic Instrumentation;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3