Spatio-Temporal Context Based Adaptive Camcorder Recording Watermarking

Author:

Hui Chen1,Liu Shaohui1,Shi Wuzhen2,Jiang Feng1,Zhao Debin1

Affiliation:

1. School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China

2. College of Electronics and Information Engineering, Shenzhen University, Nanhai Avenue, Shenzhen, China

Abstract

Video watermarking technology has attracted increasing attention in the past few years, and a great deal of traditional and deep learning-based methods have been proposed. However, these existing methods usually suffer from the following two challenges: First, most algorithms cannot resist camcorder recording attack, which limits their practical application. Second, watermark embedding may cause substantial degradation of video quality. Through analyzing the unique distortions presented in the camcorder recording process, including geometric distortion, temporal sampling distortion, sensor distortion and processing distortion, this paper proposes a novel spatio-temporal context based adaptive camcorder recording watermarking scheme STACR. In STACR, considering the geometric distortion and video visual quality, we embed the watermark by constructing a spatio-temporal histogram and incorporate a content features based adaptive locating algorithm to select embedding blocks and embedding strengths. As for the temporal sampling attack, we put forward a watermark correlation-based synchronization algorithm and combine it with cross-validation. Moreover, to resist the sensor distortion, we design a local matching-based algorithm to improve the extraction accuracy. In addition, grouped and repeated embedding strategies are combined to cope with the processing distortion. Experimental results compared with the state-of-the-art show that the proposed scheme achieves high video quality and is robust to geometric attacks, compression, scaling, transcoding, recoding, frame rate changes and especially for camcorder recording.

Funder

National Key Research and Development Program of China

National Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Stable Support Plan for Shenzhen Higher Education Institutions

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3