Augmented Collaborative Filtering for Sparseness Reduction in Personalized POI Recommendation

Author:

Cui Chaoran1,Shen Jialie2ORCID,Nie Liqiang3,Hong Richang4,Ma Jun3

Affiliation:

1. Shandong University of Finance and Economics, Jinan, China

2. Northumbria University, Newcastle, UK

3. Shandong University, Jinan, China

4. Hefei University of Technology, Hefei, China

Abstract

As mobile device penetration increases, it has become pervasive for images to be associated with locations in the form of geotags. Geotags bridge the gap between the physical world and the cyberspace, giving rise to new opportunities to extract further insights into user preferences and behaviors. In this article, we aim to exploit geotagged photos from online photo-sharing sites for the purpose of personalized Point-of-Interest (POI) recommendation. Owing to the fact that most users have only very limited travel experiences, data sparseness poses a formidable challenge to personalized POI recommendation. To alleviate data sparseness, we propose to augment current collaborative filtering algorithms along from multiple perspectives. Specifically, hybrid preference cues comprising user-uploaded and user-favored photos are harvested to study users’ tastes. Moreover, heterogeneous high-order relationship information is jointly captured from user social networks and POI multimodal contents with hypergraph models. We also build upon the matrix factorization algorithm to integrate the disparate sources of preference and relationship information, and apply our approach to directly optimize user preference rankings. Extensive experiments on a large and publicly accessible dataset well verified the potential of our approach for addressing data sparseness and offering quality recommendations to users, especially for those who have only limited travel experiences.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3