The Design and Application of a Retargetable Peephole Optimizer

Author:

Davidson Jack W.1,Fraser Christopher W.1

Affiliation:

1. Department of Computer Science, University of Arizona, Tucson, AZ

Abstract

Peephole optimizers improve object code by replacing certain sequences of instructions with better sequences. This paper describes PO, a peephole optimizer that uses a symbolic machine description to simulate pairs of adjacent instructions, replacing them, where possible, with an equivalent single instruction. As a result of this organization, PO is machine independent and can be described formally and concisely: when PO is finished, no instruction, and no pair of adjacent instructions, can be replaced with a cheaper single instruction that has the same effect. This thoroughness allows PO to relieve code generators of much case analysis; for example, they might produce only load/add-register sequences and rely on PO to, where possible, discard them in favor or add-memory, add-immediate, or increment instructions. Experiments indicate that naive code generators can give good code if used with PO.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference12 articles.

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Target Description File Generation;Journal of Computer Science and Technology;2023-11-30

2. Bibliography;Engineering a Compiler;2023

3. Instruction Selection;Engineering a Compiler;2023

4. Lasagne: a static binary translator for weak memory model architectures;Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation;2022-06-09

5. Switch Code Generation Using Program Synthesis;Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication;2020-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3