An Algorithm for Quantum Template Matching

Author:

Rahman Md. Mazder1,Dueck Gerhard W.1,Horton Joseph D.1

Affiliation:

1. University of New Brunswick, Fredericton, NB, Canada

Abstract

Quantum circuits are often generated by decomposing gates from networks with classical reversible gates. Only in rare cases, the results are minimal. Post-optimization methods, such as template matching, are employed to reduce the quantum costs of circuits. Quantum templates are derived from identity circuits. All minimal realizations, within certain limitations, can be embedded into templates. Due to this property, templates matching has the potential to reduce quantum costs of circuits. However, one of the difficulties in finding templates matches is due to the mobility of the gates within the circuit. Thus far, template matching procedures have employed heuristics to reduce the search space. This article presents an in-depth study of exact template matching with a set of algorithms. A graph structure with the corresponding circuits facilitates the discovery of potential sequences of templates to be matched, and how exact minimization of circuits can be accomplished. The significance of the proposed method is verified in benchmarks optimization.

Funder

NSER Discovery grant

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Quantum Circuits Using Algebraic Expressions;Lecture Notes in Computer Science;2024

2. Design of Quantum Computer Antivirus;2023 IEEE International Symposium on Hardware Oriented Security and Trust (HOST);2023-05-01

3. SAT-Based Quantum Circuit Adaptation;2023 Design, Automation & Test in Europe Conference & Exhibition (DATE);2023-04

4. Quantum Machine Learning Algorithms for Diagnostic Applications: A Review;Lecture Notes in Electrical Engineering;2023

5. QCIR;Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design;2022-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3