Generalized Euclidean Measure to Estimate Distances on Multilayer Networks

Author:

Coscia Michele1ORCID

Affiliation:

1. IT University of Copenhagen, Copenhagen, Denmark

Abstract

Estimating the distance covered by a spreading event on a network can lead to a better understanding of epidemics, economic growth, and human behavior. There are many methods solving this problem—which has been called Node Vector Distance (NVD)—for single layer networks. However, many phenomena are better represented by multilayer networks: networks in which nodes can connect in qualitatively different ways. In this article, we extend the literature by proposing an algorithm solving NVD for multilayer networks. We do so by adapting the Mahalanobis distance, incorporating the graph’s topology via the pseudoinverse of its Laplacian. Since this is a proper generalization of the Euclidean distance in a complex space defined by the topology of the graph, and that it works on multilayer networks, we call our measure the Multi Layer Generalized Euclidean (MLGE). In our experiments, we show that MLGE is intuitive, theoretically simpler than the alternatives, performs well in recovering infection parameters, and it is useful in specific case studies. MLGE requires solving a special case of the effective resistance on the graph, which has a high time complexity. However, this needs to be done only once per network. In the experiments, we show that MLGE can cache its most computationally heavy parts, allowing it to solve hundreds of NVD problems on the same network with little to no additional runtime. MLGE is provided as a free open source tool, along with the data and the code necessary to replicate our results.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3