Variant Grassmann Manifolds

Author:

Hong Junyuan1ORCID,Li Yang1ORCID,Chen Huanhuan1ORCID

Affiliation:

1. University of Science and Technology of China, Anhui, China

Abstract

In classification tasks, classifiers trained with finite examples might generalize poorly to new data with unknown variance. For this issue, data augmentation is a successful solution where numerous artificial examples are added to training sets. In this article, we focus on the data augmentation for improving the accuracy of action recognition, where action videos are modeled by linear dynamical systems and approximately represented as linear subspaces. These subspace representations lie in a non-Euclidean space, named Grassmann manifold, containing points as orthonormal matrixes. It is our concern that poor generalization may result from the variance of manifolds when data come from different sources or classes. Thus, we introduce infinitely many variant Grassmann manifolds (VGM) subject to a known distribution, then represent each action video as different Grassmann points leading to augmented representations. Furthermore, a prior based on the stability of subspace bases is introduced, so the manifold distribution can be adaptively determined, balancing discrimination and representation. Experimental results of multi-class and multi-source classification show that VGM softmax classifiers achieve lower test error rates compared to methods with a single manifold.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Nonlinear Dimensionality Reduction with a Local Metric;Proceedings of the 12th International Symposium on Information and Communication Technology;2023-12-07

2. Estimation for Human Motion Posture and Health Using Improved Deep Learning and Nano Biosensor;International Journal of Computational Intelligence Systems;2023-04-17

3. A Systematic Survey of Regularization and Normalization in GANs;ACM Computing Surveys;2023-02-09

4. Specific Radar Emitter Identification Using 1D-CBAM-ResNet;2022 14th International Conference on Wireless Communications and Signal Processing (WCSP);2022-11-01

5. MOCLoc: Emerging Online Collaborative Localization Enhanced by Multidimensional Scaling;IEEE Transactions on Emerging Topics in Computational Intelligence;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3