On Leveraging Large Language Models for Multilingual Intent Discovery

Author:

Chow Rudolf1ORCID,Suen King Yiu2ORCID,Lam Albert Y.S.2ORCID

Affiliation:

1. Fano Labs, Hong Kong, Hong Kong

2. Fano Labs, Hong Kong Hong Kong

Abstract

Intent discovery is vital for any real-world dialogue systems such as chatbot. Since the intents of users naturally change over time, models only trained on a static training set of intents will inevitably fail to detect new intents. While this topic has been widely studied, existing work only focuses on monolingual datasets, rendering it less practical for international businesses where it is far more common to work with multilingual data. In this work, we present a method for multilingual intent discovery through leveraging the multilingual capabilities of recent large language models. By performing joint extraction of intent and keyphrases, as well as a chain-of-thought styled reasoning, our method is able to efficiently produce clustering results that are easy to interpret. Experimental results on two different datasets show that our proposed method consistently surpasses all baselines, with up to 15% gain in adjusted rand index.

Publisher

Association for Computing Machinery (ACM)

Reference37 articles.

1. K. Ahuja, H. Diddee, R. Hada, M. Ochieng, K. Ramesh, P. Jain, A. Nambi, T. Ganu, S. Segal, M. Axmed, K. Bali, and S. Sitaram. 2023. MEGA: Multilingual Evaluation of Generative AI. In Proceedings of the 2023 Conference on EMNLP. Association for Computational Linguistics, Singapore.

2. T. Brown B. Mann N. Ryder M. Subbiah J. Kaplan P. Dhariwal A. Neelakantan P. Shyam G. Sastry A. Askell S. Agarwal A. Herbert-Voss G. Krueger T. Henighan R. Child A. Ramesh D. Ziegler J. Wu C. Winter C. Hesse M. Chen E. Sigler M. Litwin S. Gray B. Chess J. Clark C. Berner S. McCandlish A. Radford I. Sutskever and D. Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems 32. 1877–1901.

3. M. Caron, P. Bojanowski, A. Joulin, and M. Douze. 2018. Deep clustering for unsupervised learning of visual features. In European Conference on Computer Vision. 132–149.

4. A. Chatterjee and S. Sengupta. 2020. Intent Mining from past conversations for Conversational Agent. In Proceedings of the 28th International Conference on Computational Linguistics. International Committee on Computational Linguistics, Barcelona, Spain, 4140–4152.

5. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-HLT 2019. Association for Computational Linguistics, Minneapolis, Minnesota, 4171–4186.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3