Robust Arabic Text Categorization by Combining Convolutional and Recurrent Neural Networks

Author:

Ameur Mohamed Seghir Hadj1ORCID,Belkebir Riadh1,Guessoum Ahmed1ORCID

Affiliation:

1. TALAA NLP, ML, 8 Applications Research Group, Laboratory for Research in AI (LRIA), University of Science and Technology Houari Boumediene (USTHB), Bab-Ezzouar, Algiers, Algeria

Abstract

Text Categorization is an important task in the area of Natural Language Processing (NLP). Its goal is to learn a model that can accurately classify any textual document for a given language into one of a set of predefined categories. In the context of the Arabic language, several approaches have been proposed to tackle this problem, many of which are based on the bag-of-words assumption. Even though these methods usually produce good results for the classification task, they often fail to capture contextual dependencies from textual data. On the other hand, deep learning architectures that are usually based on Recurrent Neural Networks (RNNs) or Convolutional Neural Networks (CNNs) do not suffer from such a limitation and have recently shown very promising results in various NLP applications. In this work, we use deep learning models that combine RNN and CNN for the task of Arabic text categorization using static, dynamic, and fine-tuned word embeddings. The experimental results reported on the Open Source Arabic Corpora (OSAC) dataset have shown the effectiveness and high performance of our proposed models.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference56 articles.

1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Retrieved from http://tensorflow.org/ Software available from tensorflow.org. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Retrieved from http://tensorflow.org/ Software available from tensorflow.org.

2. Analyzing the Performance of Multilayer Neural Networks for Object Recognition

3. Toward an enhanced Arabic text classification using cosine similarity and Latent Semantic Indexing

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Arabic Text Classification with a Hybrid Word Embedding Method;2023 16th International Conference on Developments in eSystems Engineering (DeSE);2023-12-18

2. Text Classification of Patient Experience Comments in Saudi Dialect Using Deep Learning Techniques;Applied Sciences;2023-09-14

3. Graph-Based Extractive Text Summarization Sentence Scoring Scheme for Big Data Applications;Information;2023-08-22

4. A Decision Model for Ranking Asian Higher Education Institutes Using an NLP-Based Text Analysis Approach;ACM Transactions on Asian and Low-Resource Language Information Processing;2023-03-10

5. DeepSentiParsBERT: A Deep Learning Model for Persian Sentiment Analysis Using ParsBERT;2023 28th International Computer Conference, Computer Society of Iran (CSICC);2023-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3