Affiliation:
1. TALAA NLP, ML, 8 Applications Research Group, Laboratory for Research in AI (LRIA), University of Science and Technology Houari Boumediene (USTHB), Bab-Ezzouar, Algiers, Algeria
Abstract
Text Categorization is an important task in the area of Natural Language Processing (NLP). Its goal is to learn a model that can accurately classify any textual document for a given language into one of a set of predefined categories. In the context of the Arabic language, several approaches have been proposed to tackle this problem, many of which are based on the bag-of-words assumption. Even though these methods usually produce good results for the classification task, they often fail to capture contextual dependencies from textual data. On the other hand, deep learning architectures that are usually based on Recurrent Neural Networks (RNNs) or Convolutional Neural Networks (CNNs) do not suffer from such a limitation and have recently shown very promising results in various NLP applications. In this work, we use deep learning models that combine RNN and CNN for the task of Arabic text categorization using static, dynamic, and fine-tuned word embeddings. The experimental results reported on the Open Source Arabic Corpora (OSAC) dataset have shown the effectiveness and high performance of our proposed models.
Publisher
Association for Computing Machinery (ACM)
Reference56 articles.
1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Retrieved from http://tensorflow.org/ Software available from tensorflow.org. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Retrieved from http://tensorflow.org/ Software available from tensorflow.org.
2. Analyzing the Performance of Multilayer Neural Networks for Object Recognition
3. Toward an enhanced Arabic text classification using cosine similarity and Latent Semantic Indexing
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献