1. Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2016. Stealing machine learning models via prediction APIs. In USENIX Security Symposium. USENIX Association. Retrieved from https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer.
2. Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine learning. In ACM Asia Conference on Computer and Communications Security (ASIA CCS). ACM. DOI:10.1145/3052973.3053009
3. Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. 2019. Knockoff nets: Stealing functionality of black-box models. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. DOI:10.1109/CVPR.2019.00509
4. How to steal a machine learning classifier with deep learning
5. Kalpesh Krishna, Gaurav Singh Tomar, Ankur Parikh, Nicolas Papernot, and Mohit Iyyer. 2020. Thieves of Sesame Street: Model extraction on BERT-based APIs. In International Conference on Learning Representations (ICLR). Retrieved from https://iclr.cc/virtual_2020/poster_Byl5NREFDr.html.