Self-Supervised Learning of Depth and Ego-Motion for 3D Perception in Human Computer Interaction

Author:

Qiao Shanbao1ORCID,Xiong Neal N.2ORCID,Gao Yongbin1ORCID,Fang Zhijun1ORCID,Yu Wenjun1ORCID,Zhang Juan1ORCID,Jiang Xiaoyan1ORCID

Affiliation:

1. Shanghai University of Engineering Science

2. Sul Ross State University

Abstract

3D perception of depth and ego-motion is of vital importance in intelligent agent and Human Computer Interaction (HCI) tasks, such as robotics and autonomous driving. There are different kinds of sensors that can directly obtain 3D depth information. However, the commonly used Lidar sensor is expensive, and the effective range of RGB-D cameras is limited. In the field of computer vision, researchers have done a lot of work on 3D perception. While traditional geometric algorithms require a lot of manual features for depth estimation, Deep Learning methods have achieved great success in this field. In this work, we proposed a novel self-supervised method based on Vision Transformer (ViT) with Convolutional Neural Network (CNN) architecture, which is referred to as ViT-Depth . The image reconstruction losses computed by the estimated depth and motion between adjacent frames are treated as supervision signal to establish a self-supervised learning pipeline. This is an effective solution for tasks that need accurate and low-cost 3D perception, such as autonomous driving, robotic navigation, 3D reconstruction, and so on. Our method could leverage both the ability of CNN and Transformer to extract deep features and capture global contextual information. In addition, we propose a cross-frame loss that could constrain photometric error and scale consistency among multi-frames, which lead the training process to be more stable and improve the performance. Extensive experimental results on autonomous driving dataset demonstrate the proposed approach is competitive with the state-of-the-art depth and motion estimation methods.

Funder

National Natural Science Foundation of China

Shanghai Local Capacity Enhancement

Science and Technology Innovation Action Plan

Shanghai Science and Technology Commission

Chenguang talented program of Shanghai

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference49 articles.

1. Energy-quality scalable monocular depth estimation on low-power CPUs;Cipolletta Antonio;IEEE Internet of Things Journal,2021

2. Joint 3-D Shape Estimation and Landmark Localization From Monocular Cameras of Intelligent Vehicles

3. Attention is all you need;Vaswani Ashish;NIPS,2017

4. Squeeze-and-Excitation Networks

5. Vision meets robotics: The KITTI dataset

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3