Texture to the Rescue

Author:

Toreini Ehsan1,Shahandashti Siamak F.2,Hao Feng1

Affiliation:

1. Newcastle University, Newcastle upon Tyne, United Kingdom

2. University of York, York, United Kingdom

Abstract

In this article, we propose a novel paper fingerprinting technique based on analyzing the translucent patterns revealed when a light source shines through the paper. These patterns represent the inherent texture of paper, formed by the random interleaving of wooden particles during the manufacturing process. We show that these patterns can be easily captured by a commodity camera and condensed into a compact 2,048-bit fingerprint code. Prominent works in this area (Nature 2005, IEEE S8P 2009, CCS 2011) have all focused on fingerprinting paper based on the paper “surface.” We are motivated by the observation that capturing the surface alone misses important distinctive features such as the noneven thickness, random distribution of impurities, and different materials in the paper with varying opacities. Through experiments, we demonstrate that the embedded paper texture provides a more reliable source for fingerprinting than features on the surface. Based on the collected datasets, we achieve 0% false rejection and 0% false acceptance rates. We further report that our extracted fingerprints contain 807 degrees of freedom (DoF), which is much higher than the 249 DoF with iris codes (that have the same size of 2,048 bits). The high amount of DoF for texture-based fingerprints makes our method extremely scalable for recognition among very large databases; it also allows secure usage of the extracted fingerprint in privacy-preserving authentication schemes based on error correction techniques.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3DPS: 3D Printing Signature for Authentication Based on Equipment Distortion Model;Lecture Notes in Computer Science;2024

2. Fraud detection from paper texture using Siamese networks;Signal, Image and Video Processing;2023-04-11

3. SenSig: Practical IoT Sensor Fingerprinting Using Calibration Data;2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW);2022-06

4. Unclonable Anti‐Counterfeiting Labels Based on Microlens Arrays and Luminescent Microparticles;Advanced Optical Materials;2022-03-17

5. A Robust Document Identification Framework through f-BP Fingerprint;Journal of Imaging;2021-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3