MiDTD: A Simple and Effective Distillation Framework for Distantly Supervised Relation Extraction

Author:

Li Rui1ORCID,Yang Cheng1ORCID,Li Tingwei1ORCID,Su Sen1ORCID

Affiliation:

1. Beijing University of Posts and Telecommunications, Beijing, China

Abstract

Relation extraction (RE), an important information extraction task, faced the great challenge brought by limited annotation data. To this end, distant supervision was proposed to automatically label RE data, and thus largely increased the number of annotated instances. Unfortunately, lots of noise relation annotations brought by automatic labeling become a new obstacle. Some recent studies have shown that the teacher-student framework of knowledge distillation can alleviate the interference of noise relation annotations via label softening. Nevertheless, we find that they still suffer from two problems: propagation of inaccurate dark knowledge and constraint of a unified distillation temperature . In this article, we propose a simple and effective Multi-instance Dynamic Temperature Distillation (MiDTD) framework, which is model-agnostic and mainly involves two modules: multi-instance target fusion (MiTF) and dynamic temperature regulation (DTR). MiTF combines the teacher’s predictions for multiple sentences with the same entity pair to amend the inaccurate dark knowledge in each student’s target. DTR allocates alterable distillation temperatures to different training instances to enable the softness of most student’s targets to be regulated to a moderate range. In experiments, we construct three concrete MiDTD instantiations with BERT, PCNN, and BiLSTM-based RE models, and the distilled students significantly outperform their teachers and the state-of-the-art (SOTA) methods.

Funder

National Natural Science Foundation of China

Innovation Research Group Project of NSFC

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3