Design and Analysis of Battery-Aware Automotive Climate Control for Electric Vehicles

Author:

Vatanparvar Korosh1ORCID,Faruque Mohammad Abdullah Al1

Affiliation:

1. University of California, Irvine, CA, USA

Abstract

Electric Vehicles (EV) as a zero-emission means of transportation encounter challenges in battery design that cause a range anxieties for the drivers. Besides the electric motor, the Heating, Ventilation, and Air Conditioning (HVAC) system is another major contributor to the power consumption that may influence the EV battery lifetime and driving range. In the state-of-the-art methodologies for battery management systems, the battery performance is monitored and improved. While in the automotive climate control, the passenger’s thermal comfort is the main objective. Hence, the influence of the HVAC power on the battery behavior for the purpose of jointly optimized battery management and climate control has not been considered. In this article, we propose an automotive climate control methodology that is aware of the battery behavior and performance, while maintaining the passenger’s thermal comfort. In our methodology, battery parameters and cabin temperature are modeled and estimated, and the HVAC utilization is optimized and adjusted with respect to the electric motor and HVAC power requests. Therefore, the battery stress reduces, while the cabin temperature is maintained by predicting and optimizing the system states in the near-future. We have implemented our methodology and compared its performance to the state-of-the-art in terms of battery lifetime improvement and energy consumption reduction. We have also conducted experiments and analyses to explore multiple control window sizes, drive profiles, ambient temperatures, and modeling error rates in the methodology. It is shown that our battery-aware climate control can extend the battery lifetime by up to 13.2% and reduce the energy consumption by up to 14.4%.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3