1. Catherine Chen and Carsten Eickhoff . 2022. Evaluating Search Explainability with Psychometrics and Crowdsourcing. arXiv preprint arXiv:2210.09430 ( 2022 ). Catherine Chen and Carsten Eickhoff. 2022. Evaluating Search Explainability with Psychometrics and Crowdsourcing. arXiv preprint arXiv:2210.09430 (2022).
2. Finale Doshi-Velez and Been Kim . 2017. Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 ( 2017 ). Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017).
3. A Deep Relevance Matching Model for Ad-hoc Retrieval
4. A Deep Look into neural ranking models for information retrieval
5. The Mythos of Model Interpretability