1. Avishek Anand Lijun Lyu Maximilian Idahl Yumeng Wang Jonas Wallat and Zijian Zhang. 2022. Explainable Information Retrieval: A Survey. https://doi.org/10.48550/ARXIV.2211.02405 10.48550/ARXIV.2211.02405
2. Avishek Anand Lijun Lyu Maximilian Idahl Yumeng Wang Jonas Wallat and Zijian Zhang. 2022. Explainable Information Retrieval: A Survey. https://doi.org/10.48550/ARXIV.2211.02405
3. Anirban Chakraborty Debasis Ganguly and Owen Conlan. 2020. Retrievability based Document Selection for Relevance Feedback with Automatically Generated Query Variants. In CIKM. ACM 125--134. Anirban Chakraborty Debasis Ganguly and Owen Conlan. 2020. Retrievability based Document Selection for Relevance Feedback with Automatically Generated Query Variants. In CIKM. ACM 125--134.
4. Jianbo Chen , Le S., Martin W., and Michael Jordan . 2018 . Learning to Explain: An Information-Theoretic Perspective on Model Interpretation . In Proc. of ICML'19 , Vol. 80 . 882--891. Jianbo Chen, Le S., Martin W., and Michael Jordan. 2018. Learning to Explain: An Information-Theoretic Perspective on Model Interpretation. In Proc. of ICML'19, Vol. 80. 882--891.
5. Ioannis Chios and Suzan Verberne . 2021 . Helping results assessment by adding explainable elements to the deep relevance matching model . 3rd International Workshop on ExplainAble Recommendation and Search (EARS 2020). https://doi.org/10.48550/ARXIV.2106.05147 10.48550/ARXIV.2106.05147 Ioannis Chios and Suzan Verberne. 2021. Helping results assessment by adding explainable elements to the deep relevance matching model. 3rd International Workshop on ExplainAble Recommendation and Search (EARS 2020). https://doi.org/10.48550/ARXIV.2106.05147