Explain Like I am BM25: Interpreting a Dense Model's Ranked-List with a Sparse Approximation

Author:

Llordes Michael1ORCID,Ganguly Debasis1ORCID,Bhatia Sumit2ORCID,Agarwal Chirag2ORCID

Affiliation:

1. University of Glasgow, Glasgow, United Kingdom

2. Adobe Inc., Noida, India

Publisher

ACM

Reference36 articles.

1. Avishek Anand Lijun Lyu Maximilian Idahl Yumeng Wang Jonas Wallat and Zijian Zhang. 2022. Explainable Information Retrieval: A Survey. https://doi.org/10.48550/ARXIV.2211.02405 10.48550/ARXIV.2211.02405

2. Avishek Anand Lijun Lyu Maximilian Idahl Yumeng Wang Jonas Wallat and Zijian Zhang. 2022. Explainable Information Retrieval: A Survey. https://doi.org/10.48550/ARXIV.2211.02405

3. Anirban Chakraborty Debasis Ganguly and Owen Conlan. 2020. Retrievability based Document Selection for Relevance Feedback with Automatically Generated Query Variants. In CIKM. ACM 125--134. Anirban Chakraborty Debasis Ganguly and Owen Conlan. 2020. Retrievability based Document Selection for Relevance Feedback with Automatically Generated Query Variants. In CIKM. ACM 125--134.

4. Jianbo Chen , Le S., Martin W., and Michael Jordan . 2018 . Learning to Explain: An Information-Theoretic Perspective on Model Interpretation . In Proc. of ICML'19 , Vol. 80 . 882--891. Jianbo Chen, Le S., Martin W., and Michael Jordan. 2018. Learning to Explain: An Information-Theoretic Perspective on Model Interpretation. In Proc. of ICML'19, Vol. 80. 882--891.

5. Ioannis Chios and Suzan Verberne . 2021 . Helping results assessment by adding explainable elements to the deep relevance matching model . 3rd International Workshop on ExplainAble Recommendation and Search (EARS 2020). https://doi.org/10.48550/ARXIV.2106.05147 10.48550/ARXIV.2106.05147 Ioannis Chios and Suzan Verberne. 2021. Helping results assessment by adding explainable elements to the deep relevance matching model. 3rd International Workshop on ExplainAble Recommendation and Search (EARS 2020). https://doi.org/10.48550/ARXIV.2106.05147

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3