LOAM: Improving Long-tail Session-based Recommendation via Niche Walk Augmentation and Tail Session Mixup

Author:

Yang Heeyoon1ORCID,Choi YunSeok1ORCID,Kim Gahyung1ORCID,Lee Jee-Hyong1ORCID

Affiliation:

1. Sungkyunkwan University, Suwon, Republic of Korea

Funder

ICT Creative Consilience Program by MSIT

AI Graduate School Support Program(Sungkyunkwan University) by MSIT

Self-directed Multi-modal Intelligence for solving unknown, open domain problems by MSIT

Publisher

ACM

Reference35 articles.

1. C. Anderson . 2006. The Long Tail: Why the Future of Business Is Selling Less of More . Hachette Books . https://books.google.co.kr/books?id=DTeZAAAAQBAJ C. Anderson. 2006. The Long Tail: Why the Future of Business Is Selling Less of More. Hachette Books. https://books.google.co.kr/books?id=DTeZAAAAQBAJ

2. DLTSR: A Deep Learning Framework for Recommendations of Long-Tail Web Services

3. Tianwen Chen and Raymond Chi-Wing Wong . 2020 . Handling Information Loss of Graph Neural Networks for Session-based Recommendation. In KDD '20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining , Virtual Event, CA, USA , August 23-27, 2020. ACM, 1172--1180. https://dl.acm.org/doi/10.1145/3394486.3403170 Tianwen Chen and Raymond Chi-Wing Wong. 2020. Handling Information Loss of Graph Neural Networks for Session-based Recommendation. In KDD '20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020. ACM, 1172--1180. https://dl.acm.org/doi/10.1145/3394486.3403170

4. Remix: Rebalanced Mixup

5. Data Augmentation for Deep Neural Network Acoustic Modeling

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large Language Models for Intent-Driven Session Recommendations;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

2. A survey on popularity bias in recommender systems;User Modeling and User-Adapted Interaction;2024-07-01

3. Is Encoded Popularity Always Harmful? Explicit Debiasing with Augmentation for Contrastive Collaborative Filtering;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3