Documentation Matters: Human-Centered AI System to Assist Data Science Code Documentation in Computational Notebooks

Author:

Wang April Yi1ORCID,Wang Dakuo2,Drozdal Jaimie3,Muller Michael2,Park Soya4,Weisz Justin D.2,Liu Xuye3,Wu Lingfei2,Dugan Casey2

Affiliation:

1. University of Michigan, Ann Arbor, MI, USA

2. IBM Research, Cambridge, MA, USA

3. Rensselaer Polytechnic Institute, Troy, NY, USA

4. MIT CSAIL, Cambridge, MA, USA

Abstract

Computational notebooks allow data scientists to express their ideas through a combination of code and documentation. However, data scientists often pay attention only to the code, and neglect creating or updating their documentation during quick iterations. Inspired by human documentation practices learned from 80 highly-voted Kaggle notebooks, we design and implement Themisto, an automated documentation generation system to explore how human-centered AI systems can support human data scientists in the machine learning code documentation scenario. Themisto facilitates the creation of documentation via three approaches: a deep-learning-based approach to generate documentation for source code, a query-based approach to retrieve online API documentation for source code, and a user prompt approach to nudge users to write documentation. We evaluated Themisto in a within-subjects experiment with 24 data science practitioners, and found that automated documentation generation techniques reduced the time for writing documentation, reminded participants to document code they would have ignored, and improved participants’ satisfaction with their computational notebook.

Publisher

Association for Computing Machinery (ACM)

Subject

Human-Computer Interaction

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Static analysis driven enhancements for comprehension in machine learning notebooks;Empirical Software Engineering;2024-08-12

2. Sharing practices of software artefacts and source code for reproducible research;International Journal of Data Science and Analytics;2024-08-11

3. “Will I be replaced?” Assessing ChatGPT's effect on software development and programmer perceptions of AI tools;Science of Computer Programming;2024-07

4. Key Insights from a Feature Discovery User Study;Proceedings of the 2024 Workshop on Human-In-the-Loop Data Analytics;2024-06-14

5. Can LLMs Generate Architectural Design Decisions? - An Exploratory Empirical Study;2024 IEEE 21st International Conference on Software Architecture (ICSA);2024-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3