Influence Maximization on Undirected Graphs

Author:

Schoenebeck Grant1,Tao Biaoshuai2

Affiliation:

1. School of Information, University of Michigan, USA

2. John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, P. R. China

Abstract

We study the influence maximization problem in undirected networks, specifically focusing on the independent cascade and linear threshold models. We prove APX-hardness (NP-hardness of approximation within factor (1-τ) for some constant τ > 0) for both models, which improves the previous NP-hardness lower bound for the linear threshold model. No previous hardness result was known for the independent cascade model. As part of the hardness proof, we show some natural properties of these cascades on undirected graphs. For example, we show that the expected number of infections of a seed set S is upper bounded by the size of the edge cut of S in the linear threshold model and a special case of the independent cascade model, the weighted independent cascade model. Motivated by our upper bounds, we present a suite of highly scalable local greedy heuristics for the influence maximization problem on both the linear threshold model and the weighted independent cascade model on undirected graphs that, in practice, find seed sets that on average obtain 97.52% of the performance of the much slower greedy algorithm for the linear threshold model and 97.39% of the performance of the greedy algorithm for the weighted independent cascade model. Our heuristics also outperform other popular local heuristics, such as the degree discount heuristic by Chen et al. [7].

Funder

National Science Foundation, Career

AifT

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Marketing,Economics and Econometrics,Statistics and Probability,Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3