Mining and Quality Assessment of Mashup Model Patterns with the Crowd

Author:

Rodríguez Carlos1,Daniel Florian2,Casati Fabio1

Affiliation:

1. University of Trento, Povo (TN), Italy

2. Politecnico di Milano, Milano, Italy

Abstract

Pattern mining, that is, the automated discovery of patterns from data, is a mathematically complex and computationally demanding problem that is generally not manageable by humans. In this article, we focus on small datasets and study whether it is possible to mine patterns with the help of the crowd by means of a set of controlled experiments on a common crowdsourcing platform. We specifically concentrate on mining model patterns from a dataset of real mashup models taken from Yahoo! Pipes and cover the entire pattern mining process, including pattern identification and quality assessment. The results of our experiments show that a sensible design of crowdsourcing tasks indeed may enable the crowd to identify patterns from small datasets (40 models). The results, however, also show that the design of tasks for the assessment of the quality of patterns to decide which patterns to retain for further processing and use is much harder (our experiments fail to elicit assessments from the crowd that are similar to those by an expert). The problem is relevant in general to model-driven development (e.g., UML, business processes, scientific workflows), in that reusable model patterns encode valuable modeling and domain knowledge, such as best practices, organizational conventions, or technical choices, that modelers can benefit from when designing their own models.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3