On the Power of Symmetric Linear Programs

Author:

Atserias Albert1,Dawar Anuj2,Ochremiak Joanna3

Affiliation:

1. Universitat Politècnica de Catalunya, Barcelona, Spain

2. University of Cambridge, Cambridge, United Kingdom

3. University of Bordeaux, CNRS, LaBRI, Talence, France

Abstract

We consider families of symmetric linear programs (LPs) that decide a property of graphs (or other relational structures) in the sense that, for each size of graph, there is an LP defining a polyhedral lift that separates the integer points corresponding to graphs with the property from those corresponding to graphs without the property. We show that this is equivalent, with at most polynomial blow-up in size, to families of symmetric Boolean circuits with threshold gates. In particular, when we consider polynomial-size LPs, the model is equivalent to definability in a non-uniform version of fixed-point logic with counting (FPC). Known upper and lower bounds for FPC apply to the non-uniform version. In particular, this implies that the class of graphs with perfect matchings has polynomial-size symmetric LPs, while we obtain an exponential lower bound for symmetric LPs for the class of Hamiltonian graphs. We compare and contrast this with previous results (Yannakakis 1991), showing that any symmetric LPs for the matching and TSP polytopes have exponential size. As an application, we establish that for random, uniformly distributed graphs, polynomial-size symmetric LPs are as powerful as general Boolean circuits. We illustrate the effect of this on the well-studied planted-clique problem.

Funder

European Research Council

European Union's Horizon 2020 research and innovation programme

MICCIN

Alan Turing Institute under the EPSRC

Marie Skłodowska-Curie

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference46 articles.

1. Finding a large hidden clique in a random graph

2. Solving linear programs without breaking abstractions;Anderson Matthew;J. ACM,2015

3. Affine systems of equations and counting infinitary logic

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Orbit-finite linear programming;2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3