Leveraging Meta-path based Context for Top- N Recommendation with A Neural Co-Attention Model
Author:
Affiliation:
1. Beijing University of Posts and Telecommunications, Beijing, China
2. Renmin University of China, Beijing, China
3. University of Illinois at Chicago, Chicago, IL, USA
Funder
IIS
National Key Research and Development Program of China
Beijing Municipal Natural Science Foundation
National Natural Science Foundation of China
CNS
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3219819.3219965
Reference43 articles.
1. Gediminas Adomavicius and Alexander Tuzhilin . 2015. Context-aware recommender systems. In Recommender systems handbook. 191--226. Gediminas Adomavicius and Alexander Tuzhilin . 2015. Context-aware recommender systems. In Recommender systems handbook. 191--226.
2. Attentive Collaborative Filtering
3. Yuxiao Dong Nitesh V Chawla and Ananthram Swami . 2017. metapath2vec: Scalable representation learning for heterogeneous networks Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 135--144. 10.1145/3097983.3098036 Yuxiao Dong Nitesh V Chawla and Ananthram Swami . 2017. metapath2vec: Scalable representation learning for heterogeneous networks Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 135--144. 10.1145/3097983.3098036
4. Incorporating heterogeneous information for personalized tag recommendation in social tagging systems
Cited by 508 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Knowledge-driven hierarchical intents modeling for recommendation;Expert Systems with Applications;2025-01
2. Knowledge graph fine-grained network with attribute transfer for recommendation;Expert Systems with Applications;2024-12
3. Leveraging multiple behaviors and explicit preferences for job recommendation;Expert Systems with Applications;2024-12
4. A Bayesian deep recommender system for uncertainty-aware online physician recommendation;Information & Management;2024-11
5. Attribute mining multi-view contrastive learning network for recommendation;Expert Systems with Applications;2024-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3