Affiliation:
1. POSTECH, Nam-Gu, Pohang, Gyeongbuk, Korea
Abstract
Three-dimensional (3D) reconstruction using an RGB-D camera has been widely adopted for realistic content creation. However, high-quality texture mapping onto the reconstructed geometry is often treated as an offline step that should run after geometric reconstruction. In this article, we propose
TextureMe
, a novel approach that jointly recovers 3D surface geometry and high-quality texture in real time. The key idea is to create triangular texture patches that correspond to zero-crossing triangles of truncated signed distance function (TSDF) progressively in a global texture atlas. Our approach integrates color details into the texture patches in parallel with the depth map integration to a TSDF. It also actively updates a pool of texture patches to adapt TSDF changes and minimizes misalignment artifacts that occur due to camera drift and image distortion. Our global texture atlas representation is fully compatible with conventional texture mapping. As a result, our approach produces high-quality textures without utilizing additional texture map optimization, mesh parameterization, or heavy post-processing. High-quality scenes produced by our real-time approach are even comparable to the results from state-of-the-art methods that run offline.
Funder
Ministry of Science and ICT, Korea
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献