Cloud Building Block Chip for Creating FPGA and ASIC Clouds

Author:

Doğan Atakan1,Ebcioğlu Kemal2

Affiliation:

1. Eskisehir Technical University, Eskisehir, Turkey

2. Global Supercomputing Corporation, NY, USA

Abstract

Hardware-accelerated cloud computing systems based on FPGA chips (FPGA cloud) or ASIC chips (ASIC cloud) have emerged as a new technology trend for power-efficient acceleration of various software applications. However, the operating systems and hypervisors currently used in cloud computing will lead to power, performance, and scalability problems in an exascale cloud computing environment. Consequently, the present study proposes a parallel hardware hypervisor system that is implemented entirely in special-purpose hardware, and that virtualizes application-specific multi-chip supercomputers, to enable virtual supercomputers to share available FPGA and ASIC resources in a cloud system. In addition to the virtualization of multi-chip supercomputers, the system’s other unique features include simultaneous migration of multiple communicating hardware tasks, and on-demand increase or decrease of hardware resources allocated to a virtual supercomputer. Partitioning the flat hardware design of the proposed hypervisor system into multiple partitions and applying the chip unioning technique to its partitions, the present study introduces a cloud building block chip that can be used to create FPGA or ASIC clouds as well. Single-chip and multi-chip verification studies have been done to verify the functional correctness of the hypervisor system, which consumes only a fraction of (10%) hardware resources.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference35 articles.

1. Cloud-Based FPGA Custom Computing Machines for Streaming Applications

2. Virtualized Execution Runtime for FPGA Accelerators in the Cloud

3. A manifesto for future generation cloud computing: Research directions for the next decade;Buyya Rajkumar;Comput. Surv.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI Accelerators for Cloud and Server Applications;Artificial Intelligence and Hardware Accelerators;2023

2. Highly Parallel Multi-FPGA System Compilation from Sequential C/C++ Code in the AWS Cloud;ACM Transactions on Reconfigurable Technology and Systems;2022-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3