Affiliation:
1. University of Bristol, UK
Abstract
The monadic shallow linear (MSL) class is a decidable fragment of first-order Horn clauses that was discovered and rediscovered around the turn of the century, with applications in static analysis and verification. We propose a new class of higher-order Horn constraints which extend MSL to higher-order logic and develop a resolution-based decision procedure. Higher-order MSL Horn constraints can quite naturally capture the complex patterns of call and return that are possible in higher-order programs, which make them well suited to higher-order program verification. In fact, we show that the higher-order MSL satisfiability problem and the HORS model checking problem are interreducible, so that higher-order MSL can be seen as a constraint-based approach to higher-order model checking. Finally, we describe an implementation of our decision procedure and its application to verified socket programming.
Funder
Engineering and Physical Sciences Research Council
Publisher
Association for Computing Machinery (ACM)
Subject
Safety, Risk, Reliability and Quality,Software