LeCo: Lightweight Compression via Learning Serial Correlations

Author:

Liu Yihao1ORCID,Zeng Xinyu1ORCID,Zhang Huanchen2ORCID

Affiliation:

1. Institute for Interdisciplinary Information Science, Tsinghua University, Beijing, China

2. Institute for Interdisciplinary Information Science, Tsinghua University & Shanghai Qi Zhi Institute, Beijing, China

Abstract

Lightweight data compression is a key technique that allows column stores to exhibit superior performance for analytical queries. Despite a comprehensive study on dictionary-based encodings to approach Shannon's entropy, few prior works have systematically exploited the serial correlation in a column for compression. In this paper, we propose LeCo (i.e., Learned Compression), a framework that uses machine learning to remove the serial redundancy in a value sequence automatically to achieve an outstanding compression ratio and decompression performance. LeCo presents a general approach to this end, making existing algorithms such as Frame-of-Reference (FOR), Delta Encoding, and Run-Length Encoding (RLE) special cases under our framework. Our microbenchmark with three synthetic and eight real-world data sets shows that a prototype of LeCo achieves a Pareto improvement on both compression ratio and random access speed over the existing solutions. When integrating LeCo into widely-used applications, we observe up to 5.2× speed up in a data analytical query in the Arrow columnar execution engine, and a 16% increase in RocksDB's throughput.

Publisher

Association for Computing Machinery (ACM)

Reference115 articles.

1. 2009. Google Varint. https://static.googleusercontent.com/media/research.google.com/en//people/jeff/WSDM09-keynote.pdf.

2. 2018. 300 Million Email Database. https://archive.org/details/300MillionEmailDatabase.

3. 2020. English Word Dataset in HOPE. https://github.com/efficient/HOPE/blob/master/datasets/words.txt.

4. 2022. Apache Arrow. https://arrow.apache.org/.

5. 2022. Apache ORC. https://orc.apache.org/.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NULLS!: Revisiting Null Representation in Modern Columnar Formats;Proceedings of the 20th International Workshop on Data Management on New Hardware;2024-06-09

2. Making In-Memory Learned Indexes Efficient on Disk;Proceedings of the ACM on Management of Data;2024-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3