With a Few Square Roots, Quantum Computing Is as Easy as Pi

Author:

Carette Jacques1ORCID,Heunen Chris2ORCID,Kaarsgaard Robin3ORCID,Sabry Amr4ORCID

Affiliation:

1. McMaster University, Hamilton, Canada

2. University of Edinburgh, Edinburgh, United Kingdom

3. University of Southern Denmark, Odense, Denmark

4. Indiana University, Bloomington, USA

Abstract

Rig groupoids provide a semantic model of Π, a universal classical reversible programming language over finite types. We prove that extending rig groupoids with just two maps and three equations about them results in a model of quantum computing that is computationally universal and equationally sound and complete for a variety of gate sets. The first map corresponds to an 8th root of the identity morphism on the unit 1. The second map corresponds to a square root of the symmetry on 1+1. As square roots are generally not unique and can sometimes even be trivial, the maps are constrained to satisfy a nondegeneracy axiom, which we relate to the Euler decomposition of the Hadamard gate. The semantic construction is turned into an extension of Π, called √Π, that is a computationally universal quantum programming language equipped with an equational theory that is sound and complete with respect to the Clifford gate set, the standard gate set of Clifford+T restricted to ≤2 qubits, and the computationally universal Gaussian Clifford+T gate set.

Funder

NSERC

US National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Axioms for the category of Hilbert spaces and linear contractions;Bulletin of the London Mathematical Society;2024-02-24

2. Jeopardy: An Invertible Functional Programming Language;Lecture Notes in Computer Science;2024

3. Compositional Reversible Computation;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3