Characterizing and Predicting Users’ Behavior on Local Search Queries

Author:

Cacheda Fidel1ORCID,Blanco Roi1,Barbieri Nicola2

Affiliation:

1. University of A Coruña, Spain

2. Tumblr, New York, NY, USA

Abstract

The use of queries to find products and services that are located nearby is increasing rapidly due mainly to the ubiquity of internet access and location services provided by smartphone devices. Local search engines help users by matching queries with a predefined geographical connotation (“local queries”) against a database of local business listings. Local search differs from traditional Web search because, to correctly capture users’ click behavior, the estimation of relevance between query and candidate results must be integrated with geographical signals, such as distance. The intuition is that users prefer businesses that are physically closer to them or in a convenient area (e.g., close to their home). However, this notion of closeness depends upon other factors, like the business category, the quality of the service provided, the density of businesses in the area of interest, the hour of the day, or even the day of the week. In this work, we perform an extensive analysis of online users’ interactions with a local search engine, investigating their intent, temporal patterns, and highlighting relationships between distance-to-business and other factors, such as business reputation, Furthermore, we investigate the problem of estimating the click-through rate on local search ( LCTR ) by exploiting the combination of standard retrieval methods with a rich collection of geo-, user-, and business-dependent features. We validate our approach on a large log collected from a real-world local search service. Our evaluation shows that the non-linear combination of business and user information, geo-local and textual relevance features leads to a significant improvements over existing alternative approaches based on a combination of relevance, distance, and business reputation [1].

Funder

Spanish Government

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decoupled Variational Embedding for Signed Directed Networks;ACM Transactions on the Web;2021-01-05

2. Big Data Service Request Prediction Based on Historical Behavior Time Series;Proceedings of the 2nd International Conference on Big Data Technologies - ICBDT2019;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3