1. Arun Das and Paul Rad . 2020. Opportunities and challenges in explainable artificial intelligence (xai): A survey. arXiv preprint arXiv:2006.11371 ( 2020 ). Arun Das and Paul Rad. 2020. Opportunities and challenges in explainable artificial intelligence (xai): A survey. arXiv preprint arXiv:2006.11371 (2020).
2. Hong-Fei Deng , Ming-Wei Sun , Yu Wang , Jun Zeng , Ting Yuan , Ting Li , Di-Huan Li , Wei Chen , Ping Zhou , Qi Wang , 2021. Evaluating machine learning models for sepsis prediction: A systematic review of methodologies. Iscience ( 2021 ), 103651. Hong-Fei Deng, Ming-Wei Sun, Yu Wang, Jun Zeng, Ting Yuan, Ting Li, Di-Huan Li, Wei Chen, Ping Zhou, Qi Wang, 2021. Evaluating machine learning models for sepsis prediction: A systematic review of methodologies. Iscience (2021), 103651.
3. Diretrizes para tratamento da sepse grave/choque séptico: abordagem do agente infeccioso - diagnóstico
4. Principais bactérias causadoras de sepse: sepse em unidade de terapia intensiva
5. Pedro Celiny Ramos Garcia , Cristian Tedesco Tonial , and Jefferson Pedro Piva . 2020. Septic shock in pediatrics: the state-of-the-art. Jornal de pediatria 96 ( 2020 ), 87–98. Pedro Celiny Ramos Garcia, Cristian Tedesco Tonial, and Jefferson Pedro Piva. 2020. Septic shock in pediatrics: the state-of-the-art. Jornal de pediatria 96 (2020), 87–98.