Modeling and Simulation of Extreme-Scale Fat-Tree Networks for HPC Systems and Data Centers

Author:

Liu Ning1,Haider Adnan2,Jin Dong2,Sun Xian-He2

Affiliation:

1. Cleversafe, an IBM Company

2. Illinois Institute of Technology

Abstract

As parallel and distributed systems are evolving toward extreme scale, for example, high-performance computing systems involve millions of cores and billion-way parallelism, and high-capacity storage systems require efficient access to petabyte or exabyte of data, many new challenges are posed on designing and deploying next-generation interconnection communication networks in these systems. Fat-tree networks have been widely used in both data centers and high-performance computing (HPC) systems in the past decades and are promising candidates of the next-generation extreme-scale networks. In this article, we present FatTreeSim, a simulation framework that supports modeling and simulation of extreme-scale fat-tree networks with the goal of understanding the design constraints of next-generation HPC and distributed systems and aiding the design and performance optimization of the applications running on these systems. We have systematically experimented FatTreeSim on Emulab and Blue Gene/Q and analyzed the scalability and fidelity of FatTreeSim with various network configurations. On the Blue Gene/Q Mira, FatTreeSim can achieve a peak performance of 305 million events per second using 16,384 cores. Finally, we have applied FatTreeSim to simulate several large-scale Hadoop YARN applications to demonstrate its usability.

Funder

Maryland Procurement Office

Air Force Office of Scientific Research

Office of Science of the U.S. Department of Energy

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modelling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SimMSG: Simulating Transportation of MPI Messages in High Performance Computing Systems;2023 IEEE International Conference on High Performance Computing & Communications, Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys);2023-12-17

2. BurstBalancer: Do Less, Better Balance for Large-scale Data Center Traffic;IEEE Transactions on Parallel and Distributed Systems;2023

3. Improved Power of Two Choices for Fat-Tree Routing;IEEE Transactions on Network and Service Management;2018-12

4. Large Scale Data Centers Simulation Based on Baseline Test Model;2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2018-05

5. Guest Editorial for the TOMACS Special Issue on the Principles of Advanced Discrete Simulation (PADS);ACM Transactions on Modeling and Computer Simulation;2017-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3