Static determination of allocation rates to support real-time garbage collection

Author:

Mann Tobias1,Deters Morgan1,LeGrand Rob1,Cytron Ron K.1

Affiliation:

1. Washington University in St. Louis

Abstract

While it is generally accepted that garbage-collected languages offer advantages over languages in which objects must be explicitly deallocated, real-time developers are leery of the adverse effects a garbage collector might have on real-time performance. Semiautomatic approaches based on regions have been proposed, but incorrect usage could cause unbounded storage leaks or program failure. Moreover, correct usage cannot be guaranteed at compile time. Recently, real-time garbage collectors have been developed that provide a guaranteed fraction of the CPU to the application, and the correct operation of those collectors has been proven, subject only to the specification of certain statistics related to the type and rate of objects allocated by the application. However, unless those statistics are provided or estimated appropriately, the collector may fail to collect dead storage at a rate sufficient to pace the application's need for storage. Overspecification of those statistics is safe but leaves the application with less than its possible share of the CPU, which may prevent the application from meeting its deadlines.In this paper we present a static analysis to bound conservatively an application's allocation rate . The analysis is based on a data flow framework that requires interprocedural evaluation. We present the framework and results from analyzing some Java benchmarks. Because static analysis is necessarily conservative, we also present measurements of our benchmarks' actual allocation rates.Our work is a necessary step toward making real-time garbage collectors attractive to the hard-real-time community. By guaranteeing a bound on statistics provided to a real-time collector, we can guarantee the operation of the collector for a given application.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrated Hardware Garbage Collection;ACM Transactions on Embedded Computing Systems;2021-07

2. Worst-Case Analysis of Heap Allocations;Lecture Notes in Computer Science;2010

3. Real-Time Memory Management: Life and Times;18th Euromicro Conference on Real-Time Systems (ECRTS'06)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3