A Theoretical and Numerical Analysis of the Worst-Case Size of Reduced Ordered Binary Decision Diagrams

Author:

Newton Jim1ORCID,Verna Didier1ORCID

Affiliation:

1. EPITA, Le Kremlin-Bicêtre, France

Abstract

Binary Decision Diagrams (BDDs) and in particular ROBDDs (Reduced Ordered BDDs) are a common data structure for manipulating Boolean expressions, integrated circuit design, type inferencers, model checkers, and many other applications. Although the ROBDD is a lightweight data structure to implement, the behavior, in terms of memory allocation, may not be obvious to the program architect. We explore experimentally, numerically, and theoretically the typical and worst-case ROBDD sizes in terms of number of nodes and residual compression ratios, as compared to unreduced BDDs. While our theoretical results are not surprising, as they are in keeping with previously known results, we believe our method contributes to the current body of research by our experimental and statistical treatment of ROBDD sizes. In addition, we provide an algorithm to calculate the worst-case size. Finally, we present an algorithm for constructing a worst-case ROBDD of a given number of variables. Our approach may be useful to projects deciding whether the ROBDD is the appropriate data structure to use, and in building worst-case examples to test their code.

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Reference36 articles.

1. Binary Decision Diagrams

2. Gerold Alsmeyer. 2011. Chebyshev’s Inequality. Springer Berlin 239--240. Gerold Alsmeyer. 2011. Chebyshev’s Inequality. Springer Berlin 239--240.

3. Ansi. 1994. American National Standard: Programming Language—Common Lisp. ANSI X3.226:1994 (R1999). Ansi. 1994. American National Standard: Programming Language—Common Lisp. ANSI X3.226:1994 (R1999).

4. Theoretical insights and algorithmic tools for decision diagram-based optimization

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3