Pattern Guided Integrated Scheduling and Routing in Multi-Hop Control Networks

Author:

Ghosh Sumana1ORCID,Dey Soumyajit1,Dasgupta Pallab1

Affiliation:

1. Indian Institute of Technology Kharagpur, West Bengal, India

Abstract

Executing a set of control loops over a shared multi-hop (wireless) control network (MCN) requires careful co-scheduling of the control tasks and the routing of sensory/actuation messages over the MCN. In this work, we establish pattern guided aperiodic execution of control loops as a resource-aware alternative to traditional fully periodic executions of a set of embedded control loops sharing a computation and the communication infrastructure. We provide a satisfiability modulo theory–based co-design framework that synthesizes loop execution patterns having optimized control cost as the underlying scheduling scheme together with the associated routing solution over the MCN. The routing solution implements the timed movement of the sensory/actuation messages of the control loops, generated according to those loop execution patterns. From the given settling time requirement of the control loops, we compute a control theoretically sound model using matrix inequalities, which gives an upper bound to the number of loop drops within the finite length loop execution pattern. Next, we show how the proposed framework can be useful for evaluating the fault tolerance of a resource-constrained shared MCN subject to communication link failure.

Funder

IMPRINT

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resource Virtualization with End-to-End Timing Guarantees for Multi-Hop Multi-Channel Real-Time Wireless Networks;2023 IEEE Real-Time Systems Symposium (RTSS);2023-12-05

2. Proactive feedback for networked CPS;Proceedings of the 36th Annual ACM Symposium on Applied Computing;2021-03-22

3. GoodSpread: Criticality-Aware Static Scheduling of CPS with Multi-QoS Resources;2020 IEEE Real-Time Systems Symposium (RTSS);2020-12

4. THE LEGITIMACY OF CAPITAL CONTROLS DURING A RETREAT FROM GLOBALISATION;International and Comparative Law Quarterly;2020-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3