Real-Time Bid Optimization for Group-Buying Ads

Author:

Balakrishnan Raju1,Bhatt Rushi P.2

Affiliation:

1. Groupon Inc., Palo Alto, CA

2. Amazon.com, Bangalore, India

Abstract

Group-buying ads seeking a minimum number of customers before the deal expiry are increasingly used by daily-deal providers. Unlike traditional web ads, the advertiser’s profits for group-buying ads depend on the time to expiry and additional customers needed to satisfy the minimum group size. Since both these quantities are time-dependent, optimal bid amounts to maximize profits change with every impression. Consequently, traditional static bidding strategies are far from optimal. Instead, bid values need to be optimized in real-time to maximize expected bidder profits. This online optimization of deal profits is made possible by the advent of ad exchanges offering real-time (spot) bidding. To this end, we propose a real-time bidding strategy for group-buying deals based on the online optimization of bid values. We derive the expected bidder profit of deals as a function of the bid amounts and dynamically vary the bids to maximize profits. Furthermore, to satisfy time constraints of the online bidding, we present methods of minimizing computation timings. Subsequently, we derive the real-time ad selection, admissibility, and real-time bidding of the traditional ads as the special cases of the proposed method. We evaluate the proposed bidding, selection, and admission strategies on a multimillion click stream of 935 ads. The proposed real-time bidding, selection, and admissibility show significant profit increases over the existing strategies. Further experiments illustrate the robustness of the bidding and acceptable computation timings.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference25 articles.

1. K. Anand and R. Aron. 2003. Group buying on the web: A comparison of price-discovery mechanisms. Management Science 1546--1562. 10.1287/mnsc.49.11.1546.20582 K. Anand and R. Aron. 2003. Group buying on the web: A comparison of price-discovery mechanisms. Management Science 1546--1562. 10.1287/mnsc.49.11.1546.20582

2. R. P. Brent. 1973. Algorithms for Minimization without Derivatives. Courier Dover Publications. R. P. Brent. 1973. Algorithms for Minimization without Derivatives. Courier Dover Publications.

3. Online primal-dual algorithms for maximizing ad-auctions revenue;Buchbinder N.;Algorithms--ESA,2007

4. J. Byers M. Mitzenmacher M. Potamias and G. Zervas. 2011. A month in the life of groupon. arXiv preprint arXiv:1105.0903. J. Byers M. Mitzenmacher M. Potamias and G. Zervas. 2011. A month in the life of groupon. arXiv preprint arXiv:1105.0903.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3