HearHere: Mitigating Echo Chambers in News Consumption through an AI-based Web System

Author:

Jeon Youngseung1ORCID,Kim Jaehoon2ORCID,Park Sohyun3ORCID,Ko Yunyong4ORCID,Ryu Seongeun2ORCID,Kim Sang-Wook2ORCID,Han Kyungsik2ORCID

Affiliation:

1. University of California Los Angeles, Los Angeles, CA, USA

2. Hanyang University, Seoul, Republic of Korea

3. Ajou University, Suwon, Republic of Korea

4. Chung-Ang University, Seoul, Republic of Korea

Abstract

Considerable efforts are currently underway to mitigate the negative impacts of echo chambers, such as increased susceptibility to fake news and resistance towards accepting scientific evidence. Prior research has presented the development of computer systems that support the consumption of news information from diverse political perspectives to mitigate the echo chamber effect. However, existing studies still lack the ability to effectively support the key processes of news information consumption and quantitatively identify a political stance towards the information. In this paper, we present HearHere, an AI-based web system designed to help users accommodate information and opinions from diverse perspectives. HearHere facilitates the key processes of news information consumption through two visualizations. Visualization 1 provides political news with quantitative political stance information, derived from our graph-based political classification model, and users can experience diverse perspectives (Hear). Visualization 2 allows users to express their opinions on specific political issues in a comment form and observe the position of their own opinions relative to pro-liberal and pro-conservative comments presented on a map interface (Here). Through a user study with 94 participants, we demonstrate the feasibility of HearHere in supporting the consumption of information from various perspectives. Our findings highlight the importance of providing political stance information and quantifying users' political status as a means to mitigate political polarization. In addition, we propose design implications for system development, including the consideration of demographics such as political interest and providing users with initiatives.

Publisher

Association for Computing Machinery (ACM)

Reference92 articles.

1. Emotion Detection from Social Media Using Machine Learning Techniques: A Survey

2. Computer Supported Collaborative Work (CSCW) and Network Issues: A Survey. International Information Institute (Tokyo);Alam Aftab;Information,2013

3. Approaches, tools and applications for sentiment analysis implementation;Alessia D;International Journal of Computer Applications,2015

4. Eytan Bakshy, Solomon Messing, and Lada A Adamic. 2015. Exposure to ideologically diverse news and opinion on Facebook. Science 348, 6239 (2015), 1130--1132.

5. J Martin Bland and Douglas G Altman. 1995. Multiple significance tests: the Bonferroni method. BMJ 310, 6973 (1995), 170.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3