Blocking-Aware Partitioned Real-Time Scheduling for Uniform Heterogeneous Multicore Platforms

Author:

Han Jian-Jun1,Gong Sunlu1,Wang Zhenjiang1,Cai Wen1,Zhu Dakai2,Yang Laurence T.1ORCID

Affiliation:

1. Huazhong University of Science and Technology, Wuhan, China

2. University of Texas at San Antonio, San Antonio, TX

Abstract

Heterogeneous multicore processors have recently become de facto computing engines for state-of-the-art embedded applications. Nonetheless, very little research focuses on the scheduling of periodic (implicit-deadline) real-time tasks upon heterogeneous multicores under the requirements of task synchronization, which is stemmed from resource access conflicts and can greatly affect the schedulability of tasks. In view of partitioned Earliest Deadline First and Multiprocessor Stack Resource Policy, we first discuss the blocking-aware utilization bound for uniform heterogeneous multicores and then illustrate its non-monotonicity, where the bound may decrease with more deployed cores. Following the insights obtained from the bound analysis, taking the system heterogeneity into consideration, we propose a Synchronization-Aware Task Partitioning Algorithm for Heterogeneous Multicores (SA-TPA-HM)). Several resource-guided and heterogeneity-oriented mapping heuristics are incorporated to reduce the negative impacts of blocking interferences for better schedulability performance of tasks and balanced workload distribution across cores. The extensive simulation results show that SA-TPA-HM can obtain the schedulability ratios approximate to an Integer Non-Linear Programming--based solution, and much higher (e.g., 60% more) in contrast to the existing partitioning algorithms targeted at homogeneous multicores. The measurement results in Linux kernel further reveal the practical viability of SA-TPA-HM that can experience lower runtime overhead (e.g., 15% less) when compared to other mapping schemes.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deadline-aware Multipath Transmission for Streaming Blocks;IEEE INFOCOM 2022 - IEEE Conference on Computer Communications;2022-05-02

2. Partition Scheduling Algorithm for Shared Resources in Real-Time Systems;2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2021-10-17

3. Global emergency-based job-level scheduling for weakly-hard real-time systems;Journal of Systems Architecture;2021-08

4. New Insights Into the Real-Time Performance of a Multicore Processor;IEEE Access;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3