Filling regions in binary raster images

Author:

Shani Uri1

Affiliation:

1. Computer Science Department, University of Rochester, Rochester, NY

Abstract

Filling regions in raster images is the term given to the problem of extracting a connected region (that contains some preselected seed pixel) and filling it with some color . A connected region is formally defined as the collection of all pixels that are in the transitive closure of a pixel-connectivity operator that is applied to the seed. For example, the 4-pixel-connectivity operator selects all pixels that are (spatially) 4-connected to the pixel operand, and have the same color. This problem can be solved relatively easily if the fill color is distinguishable so that every pixel, once colored (i.e. flagged OLD) will not be considered again. In binary images, the fill “color” is usually a binary pattern and therefore, a “colored” pixel may still have its previous (e.g., black or white) color. This fact makes the problem non-trivial. In this paper, a region to be filled is represented as a connected directed a-cyclic planar graph in which nodes are regular regions (defined below) that are easy to handle. An arc connects a regular region to its neighbor below which shares a common horizontal sub-boundary. Based on this abstract representation of a region, a formulation of the filling problem is developed as a variant of graph traversing. The difficulties imposed by filling with a binary pattern, and the avoidance of an explicit description of the graph are explored and a solution is presented. This solution utilizes the frame buffer (that is used to display the image) for improved efficiency of a graph traversal algorithm. This method turns out to be similar to [Lieberman-78], that is shown here to be incorrect. The complexity of the new algorithm is 0(N*L+ N*Log N), compared to 0(N*L*Log N) there, where N is the number of nodes in the graph and L is the average composite degree of each node. A proof of correctness for the new algorithm is given too.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,General Computer Science

Reference7 articles.

1. Abstract data types and the development of data structures

2. Knuth D.E. The Art of Computer Programming vol 1 section 2.2.1. Knuth D.E. The Art of Computer Programming vol 1 section 2.2.1.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Boundary Treatment Algorithm in Eight-Connected Binary Images;Recent Advances in Computer Science and Information Engineering;2012

2. Image Representation and Description;Image Processing and Pattern Recognition;2010-08-04

3. Programming with C++ concepts;Science of Computer Programming;2010-07

4. A new and fast contour-filling algorithm;Pattern Recognition;2005-12

5. Region-filling algorithm on bincode-based contour and its implementation;Computers & Graphics;2000-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3