A linear time exact hidden surface algorithm

Author:

Franklin Wm Randolph1

Affiliation:

1. Electrical and Systems Engineering Dept., Rensselaer Polytechnic Institute, Troy, NY

Abstract

This paper presents a new hidden surface algorithm. Its output is the set of the visible pieces of edges and faces, and is as accurate as the arithmetic precision of the computer. Thus calculating the hidden surfaces for a higher resolution device takes no more time. If the faces are independently and identically distributed, then the execution time is linear in the number of faces. In particular, the execution time does not increase with the depth complexity. This algorithm overlays a grid on the screen whose fineness depends on the number and size of the faces. Edges and faces are sorted into grid cells. Only objects in the same cell can intersect or hide each other. Also, if a face completely covers a cell then nothing behind it in the cell is relevant. Three programs have tested this algorithm. The first verified the variable grid concept on 50,000 intersecting edges. The second verified the linear time, fast speed, and irrelevance of depth complexity for hidden lines on 10,000 spheres. This also tested depth complexities up to 30, and showed that perspective scenes with the farther objects smaller are even faster to calculate. The third verified this for hidden surfaces on 3000 squares.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,General Computer Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytic Visibility on the GPU;Computer Graphics Forum;2013-05

2. Computational Geometry;Encyclopedia of Operations Research and Management Science;2013

3. An Optimal Hidden-Surface Algorithm and Its Parallelization;Computational Science and Its Applications - ICCSA 2011;2011

4. The spherical visibility map;Computer-Aided Design;2007-01

5. 10.1007/1-4020-0611-x_142;Encyclopedia of Operations Research and Management Science;2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3