Report on the sixth workshop on exploiting semantic annotations in information retrieval (ESAIR'13)

Author:

Bennett Paul N.1,Gabrilovich Evgeniy2,Kamps Jaap3,Karlgren Jussi4

Affiliation:

1. Microsoft Research, USA

2. Google, USA

3. University of Amsterdam, The Netherlands

4. Gavagai, Sweden and KTH Royal Institute of Technology, Sweden

Abstract

There is an increasing amount of structure on the web as a result of modern web languages, user tagging and annotation, emerging robust NLP tools, and an ever growing volume of linked data. These meaningful, semantic, annotations hold the promise to significantly enhance information access, by enhancing the depth of analysis of today's systems. Currently, we have only started exploring the possibilities and only begin to understand how these valuable semantic cues can be put to fruitful use. ESAIR'13 focuses on two of the most challenging aspects to address in the coming years. First, there is a need to include the currently emerging knowledge resources (such as DBpedia, Freebase) as underlying semantic model giving access to an unprecedented scope and detail of factual information. Second, there is a need to include annotations beyond the topical dimension (think of sentiment, reading level, prerequisite level, etc) that contain vital cues for matching the specific needs and profile of the searcher at hand. There was a strong feeling that we made substantial progress. Specifically, the discussion contributed to our understanding of the way forward. First, emerging large scale knowledge bases form a crucial component for semantic search, providing a unified framework with zillions of entities and relations. Second, in addition to low level factual annotation, non-topical annotation of larger chunks of text can provide powerful cues on the expertise of the search and (un)suitability of information. Third, novel user interfaces are key to unleash powerful structured querying enabled by semantic annotation|the potential of rich document annotations can only be realized if matched by more articulate queries exploiting these powerful retrieval cues|and a more dynamic approach is emerging by exploiting new forms of query autosuggest.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Management Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Named entity disambiguation in short texts over knowledge graphs;Knowledge and Information Systems;2022-01-03

2. From XML Retrieval to Semantic Search and Beyond;Information Retrieval Evaluation in a Changing World;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3