Computing Blindfolded on Data Homomorphically Encrypted under Multiple Keys: A Survey

Author:

Aloufi Asma1,Hu Peizhao2,Song Yongsoo3,Lauter Kristin4

Affiliation:

1. Taif University, Al Hawiyah, Taif, Saudi Arabia

2. Rochester Institute of Technology, Rochester, NY

3. Seoul National University, Gwanak-gu, Seoul, Republic of Korea

4. Microsoft Research, Redmond, WA

Abstract

With capability of performing computations on encrypted data without needing the secret key, homomorphic encryption (HE) is a promising cryptographic technique that makes outsourced computations secure and privacy-preserving. A decade after Gentry’s breakthrough discovery of how we might support arbitrary computations on encrypted data, many studies followed and improved various aspects of HE, such as faster bootstrapping and ciphertext packing. However, the topic of how to support secure computations on ciphertexts encrypted under multiple keys does not receive enough attention. This capability is crucial in many application scenarios where data owners want to engage in joint computations and are preferred to protect their sensitive data under their own secret keys. Enabling this capability is a non-trivial task. In this article, we present a comprehensive survey of the state-of-the-art multi-key techniques and schemes that target different systems and threat models. In particular, we review recent constructions based on Threshold Homomorphic Encryption (ThHE) and Multi-Key Homomorphic Encryption (MKHE). We analyze these cryptographic techniques and schemes based on a new secure outsourced computation model and examine their complexities. We share lessons learned and draw observations for designing better schemes with reduced overheads.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3