Algorithms and metrics for processing multiple heterogeneous continuous queries

Author:

Sharaf Mohamed A.1,Chrysanthis Panos K.1,Labrinidis Alexandros1,Pruhs Kirk1

Affiliation:

1. University of Pittsburgh, Pittsburgh, PA

Abstract

The emergence of monitoring applications has precipitated the need for Data Stream Management Systems (DSMSs), which constantly monitor incoming data feeds (through registered continuous queries), in order to detect events of interest. In this article, we examine the problem of how to schedule multiple Continuous Queries (CQs) in a DSMS to optimize different Quality of Service (QoS) metrics. We show that, unlike traditional online systems, scheduling policies in DSMSs that optimize for average response time will be different from policies that optimize for average slowdown, which is a more appropriate metric to use in the presence of a heterogeneous workload. Towards this, we propose policies to optimize for the average-case performance for both metrics. Additionally, we propose a hybrid scheduling policy that strikes a fine balance between performance and fairness, by looking at both the average- and worst-case performance, for both metrics. We also show how our policies can be adaptive enough to handle the inherent dynamic nature of monitoring applications. Furthermore, we discuss how our policies can be efficiently implemented and extended to exploit sharing in optimized multi-query plans and multi-stream CQs. Finally, we experimentally show using real data that our policies consistently outperform currently used ones.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accelerating Stream Processing Queries with Congestion-aware Scheduling and Real-time Linux Threads;Proceedings of the 20th ACM International Conference on Computing Frontiers;2023-05-09

2. The Metaverse Data Deluge: What Can We Do About It?;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

3. Runtime Adaptation of Data Stream Processing Systems: The State of the Art;ACM Computing Surveys;2022-01-31

4. Lachesis;Proceedings of the 22nd International Middleware Conference;2021-12-02

5. Klink: Progress-Aware Scheduling for Streaming Data Systems;Proceedings of the 2021 International Conference on Management of Data;2021-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3