ONION: Online Semantic Autoencoder Hashing for Cross-Modal Retrieval

Author:

Zhang Donglin1ORCID,Wu Xiao-Jun1ORCID,Chen Guoqing1ORCID

Affiliation:

1. Jiangnan University, Wuxi, China

Abstract

Cross-modal hashing (CMH) has recently received increasing attention with the merit of speed and storage in performing large-scale cross-media similarity search. However, most existing cross-media approaches utilize the batch-based mode to update hash functions, without the ability to efficiently handle the online streaming multimedia data. Online hashing can effectively address the preceding issue by using the online learning scheme to incrementally update the hash functions. Nevertheless, the existing online CMH approaches still suffer from several challenges, such as (1) how to efficiently and effectively utilize the supervision information, (2) how to learn more powerful hash functions, and (3) how to solve the binary constraints. To mitigate these limitations, we present a novel online hashing approach named ONION ( ON line semant I c aut O encoder hashi N g). Specifically, it leverages the semantic autoencoder scheme to establish the correlations between binary codes and labels, delivering the power to obtain more discriminative hash codes. Besides, the proposed ONION directly utilizes the label inner product to build the connection between existing data and newly coming data. Therefore, the optimization is less sensitive to the newly arriving data. Equipping a discrete optimization scheme designed to solve the binary constraints, the quantization errors can be dramatically reduced. Furthermore, the hash functions are learned by the proposed autoencoder strategy, making the hash functions more powerful. Extensive experiments on three large-scale databases demonstrate that the performance of our ONION is superior to several recent competitive online and offline cross-media algorithms.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3