WCET-Aware Function-Level Dynamic Code Management on Scratchpad Memory

Author:

Kim Yooseong1,Broman David2,Shrivastava Aviral1

Affiliation:

1. Arizona State University

2. KTH Royal Institute of Technology, Sweden

Abstract

Scratchpad memory (SPM) is a promising on-chip memory choice in real-time and cyber-physical systems where timing is of the utmost importance. SPM has time-predictable characteristics since its data movement between the SPM and the main memory is entirely managed by software. One way of such management is dynamic management. In dynamic management of instruction SPMs, code blocks are dynamically copied from the main memory to the SPM at runtime by executing direct memory access (DMA) instructions. Code management techniques try to minimize the overhead of DMA operations by finding an allocation scheme that leads to efficient utilization. In this article, we present three function-level code management techniques. These techniques perform allocation at the granularity of functions, with the objective of minimizing the impact of DMA overhead to the worst-case execution time (WCET) of a given program. The first technique finds an optimal mapping of each function to a region using integer linear programming (ILP), whereas the second technique is a polynomial-time heuristic that is suboptimal. The third technique maps functions directly to SPM addresses, not using regions, which can further reduce the WCET. Based on ILP, it can also find an optimal mapping. We evaluate our techniques using the Mälardalen WCET suite, MiBench suite, and proprietary automotive applications from industry. The results show that our techniques can significantly reduce the WCET estimates compared to caches with the state-of-the-art cache analysis.

Funder

Vetenskapsrådet

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SA-SPM: an efficient compiler for security aware scratchpad memory (invited paper);Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems - LCTES 2019;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3