Multidimensional Information Systems Metadata Repository Development with a Data Warehouse Structure Using "Data Vault" Methodology

Author:

Kuznetcov Yevgeni1,Fomin Maxim2,Vinogradov Andrei3

Affiliation:

1. Department of Digital Solutions, KSN Technology Company, Moscow, Russia

2. Department of Information Technology, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia

3. Artificial Intelligence Research Center, Ailamazyan Program Systems Institute of RAS (PSI RAS), Pereslavl-Zalessky, Russia

Publisher

ACM

Reference25 articles.

1. William Inmon. 1999. Building the Operational Data Store (2nd ed.).Wiley Publishing. DOI: https://doi.org/10.1016/B978-0-12-802044-9.00019-2 William Inmon. 1999. Building the Operational Data Store (2nd ed.).Wiley Publishing. DOI: https://doi.org/10.1016/B978-0-12-802044-9.00019-2

2. Carlos Costa Carina Andrade Maribel Yasmina Santos. 2018. Big Data Warehouses for Smart Industries. In Encyclopedia of Big Data Technologies. Springer 1--11. DOI: https://doi.org/10.1007/978-3-319-63962-8_204-1 Carlos Costa Carina Andrade Maribel Yasmina Santos. 2018. Big Data Warehouses for Smart Industries. In Encyclopedia of Big Data Technologies. Springer 1--11. DOI: https://doi.org/10.1007/978-3-319-63962-8_204-1

3. Ralph Kimball Margy Ross. 2013. The Data Warehouse Toolkit: the Definitive Guide to Dimensional Modeling (3rd ed.). Wiley Publishing. ISBN: 978-1-118-53080-1 Ralph Kimball Margy Ross. 2013. The Data Warehouse Toolkit: the Definitive Guide to Dimensional Modeling (3rd ed.). Wiley Publishing. ISBN: 978-1-118-53080-1

4. Efficient Big Data Modelling and Organization for Hadoop Hive-Based Data Warehouses. In Information Systems. EMCIS Lecture Notes in Business Information Processing vol 299. Springer Efficient Big Data Modelling and Organization for Hadoop Hive-Based Data Warehouses. In Information Systems. EMCIS Eduarda Costa Carlos Costa Maribel Yasmina Santos 2017 3 16

5. Krish Krishnan. 2013. Data Warehausing in the Age of Big Data. Elsevier Inc. DOI: https://doi.org/10.1016/C2012-0-02737-8 Krish Krishnan. 2013. Data Warehausing in the Age of Big Data. Elsevier Inc. DOI: https://doi.org/10.1016/C2012-0-02737-8

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3