Affiliation:
1. Beihang University, China
2. Beijing Advanced Innovation Center for Big Data and Brain Computing, China
Abstract
Over the past a few years, research and development has made significant progresses on big data analytics. A fundamental issue for big data analytics is the efficiency. If the optimal solution is unable to attain or unnecessary or has a price to high to pay, it is reasonable to sacrifice optimality with a "good" feasible solution that can be computed efficiently. Existing approximation techniques can be in general classified into approximation algorithms, approximate query processing for aggregate SQL queries and approximation computing for multiple layers of the system stack. In this article, we systematically introduce approximate computation,
i.e.
, query approximation and data approximation, for efficient and effective big data analytics. We explain the ideas and rationales behind query and data approximation, and show efficiency can be obtained with high effectiveness, and even without sacrificing for effectiveness, for certain data analytic tasks.
Publisher
Association for Computing Machinery (ACM)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献